3.304 \(\int (a+b \sec (c+d x))^4 (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=200 \[ \frac{b \left (34 a^2 A b+19 a^3 B+16 a b^2 B+4 A b^3\right ) \tan (c+d x)}{6 d}+\frac{\left (32 a^3 A b+24 a^2 b^2 B+8 a^4 B+16 a A b^3+3 b^4 B\right ) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{b^2 \left (26 a^2 B+32 a A b+9 b^2 B\right ) \tan (c+d x) \sec (c+d x)}{24 d}+a^4 A x+\frac{b (7 a B+4 A b) \tan (c+d x) (a+b \sec (c+d x))^2}{12 d}+\frac{b B \tan (c+d x) (a+b \sec (c+d x))^3}{4 d} \]

[Out]

a^4*A*x + ((32*a^3*A*b + 16*a*A*b^3 + 8*a^4*B + 24*a^2*b^2*B + 3*b^4*B)*ArcTanh[Sin[c + d*x]])/(8*d) + (b*(34*
a^2*A*b + 4*A*b^3 + 19*a^3*B + 16*a*b^2*B)*Tan[c + d*x])/(6*d) + (b^2*(32*a*A*b + 26*a^2*B + 9*b^2*B)*Sec[c +
d*x]*Tan[c + d*x])/(24*d) + (b*(4*A*b + 7*a*B)*(a + b*Sec[c + d*x])^2*Tan[c + d*x])/(12*d) + (b*B*(a + b*Sec[c
 + d*x])^3*Tan[c + d*x])/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.327352, antiderivative size = 200, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3918, 4056, 4048, 3770, 3767, 8} \[ \frac{b \left (34 a^2 A b+19 a^3 B+16 a b^2 B+4 A b^3\right ) \tan (c+d x)}{6 d}+\frac{\left (32 a^3 A b+24 a^2 b^2 B+8 a^4 B+16 a A b^3+3 b^4 B\right ) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{b^2 \left (26 a^2 B+32 a A b+9 b^2 B\right ) \tan (c+d x) \sec (c+d x)}{24 d}+a^4 A x+\frac{b (7 a B+4 A b) \tan (c+d x) (a+b \sec (c+d x))^2}{12 d}+\frac{b B \tan (c+d x) (a+b \sec (c+d x))^3}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^4*(A + B*Sec[c + d*x]),x]

[Out]

a^4*A*x + ((32*a^3*A*b + 16*a*A*b^3 + 8*a^4*B + 24*a^2*b^2*B + 3*b^4*B)*ArcTanh[Sin[c + d*x]])/(8*d) + (b*(34*
a^2*A*b + 4*A*b^3 + 19*a^3*B + 16*a*b^2*B)*Tan[c + d*x])/(6*d) + (b^2*(32*a*A*b + 26*a^2*B + 9*b^2*B)*Sec[c +
d*x]*Tan[c + d*x])/(24*d) + (b*(4*A*b + 7*a*B)*(a + b*Sec[c + d*x])^2*Tan[c + d*x])/(12*d) + (b*B*(a + b*Sec[c
 + d*x])^3*Tan[c + d*x])/(4*d)

Rule 3918

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[(b*
d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1))/(f*m), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 2)*Simp[a^2*c
*m + (b^2*d*(m - 1) + 2*a*b*c*m + a^2*d*m)*Csc[e + f*x] + b*(b*c*m + a*d*(2*m - 1))*Csc[e + f*x]^2, x], x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 1] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 4056

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_.), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[1/(m + 1), Int
[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*A*(m + 1) + ((A*b + a*B)*(m + 1) + b*C*m)*Csc[e + f*x] + (b*B*(m + 1) + a
*C*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0]

Rule 4048

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_)), x_Symbol] :> -Simp[(b*C*Csc[e + f*x]*Cot[e + f*x])/(2*f), x] + Dist[1/2, Int[Simp[2*A*a + (2*B*a + b*(
2*A + C))*Csc[e + f*x] + 2*(a*C + B*b)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int (a+b \sec (c+d x))^4 (A+B \sec (c+d x)) \, dx &=\frac{b B (a+b \sec (c+d x))^3 \tan (c+d x)}{4 d}+\frac{1}{4} \int (a+b \sec (c+d x))^2 \left (4 a^2 A+\left (8 a A b+4 a^2 B+3 b^2 B\right ) \sec (c+d x)+b (4 A b+7 a B) \sec ^2(c+d x)\right ) \, dx\\ &=\frac{b (4 A b+7 a B) (a+b \sec (c+d x))^2 \tan (c+d x)}{12 d}+\frac{b B (a+b \sec (c+d x))^3 \tan (c+d x)}{4 d}+\frac{1}{12} \int (a+b \sec (c+d x)) \left (12 a^3 A+\left (36 a^2 A b+8 A b^3+12 a^3 B+23 a b^2 B\right ) \sec (c+d x)+b \left (32 a A b+26 a^2 B+9 b^2 B\right ) \sec ^2(c+d x)\right ) \, dx\\ &=\frac{b^2 \left (32 a A b+26 a^2 B+9 b^2 B\right ) \sec (c+d x) \tan (c+d x)}{24 d}+\frac{b (4 A b+7 a B) (a+b \sec (c+d x))^2 \tan (c+d x)}{12 d}+\frac{b B (a+b \sec (c+d x))^3 \tan (c+d x)}{4 d}+\frac{1}{24} \int \left (24 a^4 A+3 \left (32 a^3 A b+16 a A b^3+8 a^4 B+24 a^2 b^2 B+3 b^4 B\right ) \sec (c+d x)+4 b \left (34 a^2 A b+4 A b^3+19 a^3 B+16 a b^2 B\right ) \sec ^2(c+d x)\right ) \, dx\\ &=a^4 A x+\frac{b^2 \left (32 a A b+26 a^2 B+9 b^2 B\right ) \sec (c+d x) \tan (c+d x)}{24 d}+\frac{b (4 A b+7 a B) (a+b \sec (c+d x))^2 \tan (c+d x)}{12 d}+\frac{b B (a+b \sec (c+d x))^3 \tan (c+d x)}{4 d}+\frac{1}{6} \left (b \left (34 a^2 A b+4 A b^3+19 a^3 B+16 a b^2 B\right )\right ) \int \sec ^2(c+d x) \, dx+\frac{1}{8} \left (32 a^3 A b+16 a A b^3+8 a^4 B+24 a^2 b^2 B+3 b^4 B\right ) \int \sec (c+d x) \, dx\\ &=a^4 A x+\frac{\left (32 a^3 A b+16 a A b^3+8 a^4 B+24 a^2 b^2 B+3 b^4 B\right ) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{b^2 \left (32 a A b+26 a^2 B+9 b^2 B\right ) \sec (c+d x) \tan (c+d x)}{24 d}+\frac{b (4 A b+7 a B) (a+b \sec (c+d x))^2 \tan (c+d x)}{12 d}+\frac{b B (a+b \sec (c+d x))^3 \tan (c+d x)}{4 d}-\frac{\left (b \left (34 a^2 A b+4 A b^3+19 a^3 B+16 a b^2 B\right )\right ) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{6 d}\\ &=a^4 A x+\frac{\left (32 a^3 A b+16 a A b^3+8 a^4 B+24 a^2 b^2 B+3 b^4 B\right ) \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{b \left (34 a^2 A b+4 A b^3+19 a^3 B+16 a b^2 B\right ) \tan (c+d x)}{6 d}+\frac{b^2 \left (32 a A b+26 a^2 B+9 b^2 B\right ) \sec (c+d x) \tan (c+d x)}{24 d}+\frac{b (4 A b+7 a B) (a+b \sec (c+d x))^2 \tan (c+d x)}{12 d}+\frac{b B (a+b \sec (c+d x))^3 \tan (c+d x)}{4 d}\\ \end{align*}

Mathematica [A]  time = 1.02719, size = 160, normalized size = 0.8 \[ \frac{3 \left (32 a^3 A b+24 a^2 b^2 B+8 a^4 B+16 a A b^3+3 b^4 B\right ) \tanh ^{-1}(\sin (c+d x))+3 b \tan (c+d x) \left (b \left (24 a^2 B+16 a A b+3 b^2 B\right ) \sec (c+d x)+8 \left (6 a^2 A b+4 a^3 B+4 a b^2 B+A b^3\right )+2 b^3 B \sec ^3(c+d x)\right )+24 a^4 A d x+8 b^3 (4 a B+A b) \tan ^3(c+d x)}{24 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^4*(A + B*Sec[c + d*x]),x]

[Out]

(24*a^4*A*d*x + 3*(32*a^3*A*b + 16*a*A*b^3 + 8*a^4*B + 24*a^2*b^2*B + 3*b^4*B)*ArcTanh[Sin[c + d*x]] + 3*b*(8*
(6*a^2*A*b + A*b^3 + 4*a^3*B + 4*a*b^2*B) + b*(16*a*A*b + 24*a^2*B + 3*b^2*B)*Sec[c + d*x] + 2*b^3*B*Sec[c + d
*x]^3)*Tan[c + d*x] + 8*b^3*(A*b + 4*a*B)*Tan[c + d*x]^3)/(24*d)

________________________________________________________________________________________

Maple [A]  time = 0.049, size = 338, normalized size = 1.7 \begin{align*}{a}^{4}Ax+{\frac{A{a}^{4}c}{d}}+{\frac{B{a}^{4}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+4\,{\frac{A{a}^{3}b\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+4\,{\frac{B{a}^{3}b\tan \left ( dx+c \right ) }{d}}+6\,{\frac{A{a}^{2}{b}^{2}\tan \left ( dx+c \right ) }{d}}+3\,{\frac{B{a}^{2}{b}^{2}\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{d}}+3\,{\frac{B{a}^{2}{b}^{2}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+2\,{\frac{Aa{b}^{3}\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{d}}+2\,{\frac{Aa{b}^{3}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+{\frac{8\,Ba{b}^{3}\tan \left ( dx+c \right ) }{3\,d}}+{\frac{4\,Ba{b}^{3}\tan \left ( dx+c \right ) \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3\,d}}+{\frac{2\,A{b}^{4}\tan \left ( dx+c \right ) }{3\,d}}+{\frac{A{b}^{4}\tan \left ( dx+c \right ) \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3\,d}}+{\frac{B{b}^{4}\tan \left ( dx+c \right ) \left ( \sec \left ( dx+c \right ) \right ) ^{3}}{4\,d}}+{\frac{3\,B{b}^{4}\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{8\,d}}+{\frac{3\,B{b}^{4}\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{8\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^4*(A+B*sec(d*x+c)),x)

[Out]

a^4*A*x+1/d*A*a^4*c+1/d*B*a^4*ln(sec(d*x+c)+tan(d*x+c))+4/d*A*a^3*b*ln(sec(d*x+c)+tan(d*x+c))+4/d*B*a^3*b*tan(
d*x+c)+6/d*A*a^2*b^2*tan(d*x+c)+3/d*B*a^2*b^2*sec(d*x+c)*tan(d*x+c)+3/d*B*a^2*b^2*ln(sec(d*x+c)+tan(d*x+c))+2/
d*A*a*b^3*sec(d*x+c)*tan(d*x+c)+2/d*A*a*b^3*ln(sec(d*x+c)+tan(d*x+c))+8/3/d*B*a*b^3*tan(d*x+c)+4/3/d*B*a*b^3*t
an(d*x+c)*sec(d*x+c)^2+2/3/d*A*b^4*tan(d*x+c)+1/3/d*A*b^4*tan(d*x+c)*sec(d*x+c)^2+1/4/d*B*b^4*tan(d*x+c)*sec(d
*x+c)^3+3/8/d*B*b^4*sec(d*x+c)*tan(d*x+c)+3/8/d*B*b^4*ln(sec(d*x+c)+tan(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 0.980455, size = 409, normalized size = 2.04 \begin{align*} \frac{48 \,{\left (d x + c\right )} A a^{4} + 64 \,{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B a b^{3} + 16 \,{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A b^{4} - 3 \, B b^{4}{\left (\frac{2 \,{\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 72 \, B a^{2} b^{2}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 48 \, A a b^{3}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 48 \, B a^{4} \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) + 192 \, A a^{3} b \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) + 192 \, B a^{3} b \tan \left (d x + c\right ) + 288 \, A a^{2} b^{2} \tan \left (d x + c\right )}{48 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

1/48*(48*(d*x + c)*A*a^4 + 64*(tan(d*x + c)^3 + 3*tan(d*x + c))*B*a*b^3 + 16*(tan(d*x + c)^3 + 3*tan(d*x + c))
*A*b^4 - 3*B*b^4*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*
x + c) + 1) + 3*log(sin(d*x + c) - 1)) - 72*B*a^2*b^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c)
+ 1) + log(sin(d*x + c) - 1)) - 48*A*a*b^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(
sin(d*x + c) - 1)) + 48*B*a^4*log(sec(d*x + c) + tan(d*x + c)) + 192*A*a^3*b*log(sec(d*x + c) + tan(d*x + c))
+ 192*B*a^3*b*tan(d*x + c) + 288*A*a^2*b^2*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 0.604623, size = 603, normalized size = 3.02 \begin{align*} \frac{48 \, A a^{4} d x \cos \left (d x + c\right )^{4} + 3 \,{\left (8 \, B a^{4} + 32 \, A a^{3} b + 24 \, B a^{2} b^{2} + 16 \, A a b^{3} + 3 \, B b^{4}\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \,{\left (8 \, B a^{4} + 32 \, A a^{3} b + 24 \, B a^{2} b^{2} + 16 \, A a b^{3} + 3 \, B b^{4}\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (6 \, B b^{4} + 16 \,{\left (6 \, B a^{3} b + 9 \, A a^{2} b^{2} + 4 \, B a b^{3} + A b^{4}\right )} \cos \left (d x + c\right )^{3} + 3 \,{\left (24 \, B a^{2} b^{2} + 16 \, A a b^{3} + 3 \, B b^{4}\right )} \cos \left (d x + c\right )^{2} + 8 \,{\left (4 \, B a b^{3} + A b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

1/48*(48*A*a^4*d*x*cos(d*x + c)^4 + 3*(8*B*a^4 + 32*A*a^3*b + 24*B*a^2*b^2 + 16*A*a*b^3 + 3*B*b^4)*cos(d*x + c
)^4*log(sin(d*x + c) + 1) - 3*(8*B*a^4 + 32*A*a^3*b + 24*B*a^2*b^2 + 16*A*a*b^3 + 3*B*b^4)*cos(d*x + c)^4*log(
-sin(d*x + c) + 1) + 2*(6*B*b^4 + 16*(6*B*a^3*b + 9*A*a^2*b^2 + 4*B*a*b^3 + A*b^4)*cos(d*x + c)^3 + 3*(24*B*a^
2*b^2 + 16*A*a*b^3 + 3*B*b^4)*cos(d*x + c)^2 + 8*(4*B*a*b^3 + A*b^4)*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x +
c)^4)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (A + B \sec{\left (c + d x \right )}\right ) \left (a + b \sec{\left (c + d x \right )}\right )^{4}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**4*(A+B*sec(d*x+c)),x)

[Out]

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))**4, x)

________________________________________________________________________________________

Giac [B]  time = 1.31484, size = 857, normalized size = 4.28 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^4*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

1/24*(24*(d*x + c)*A*a^4 + 3*(8*B*a^4 + 32*A*a^3*b + 24*B*a^2*b^2 + 16*A*a*b^3 + 3*B*b^4)*log(abs(tan(1/2*d*x
+ 1/2*c) + 1)) - 3*(8*B*a^4 + 32*A*a^3*b + 24*B*a^2*b^2 + 16*A*a*b^3 + 3*B*b^4)*log(abs(tan(1/2*d*x + 1/2*c) -
 1)) - 2*(96*B*a^3*b*tan(1/2*d*x + 1/2*c)^7 + 144*A*a^2*b^2*tan(1/2*d*x + 1/2*c)^7 - 72*B*a^2*b^2*tan(1/2*d*x
+ 1/2*c)^7 - 48*A*a*b^3*tan(1/2*d*x + 1/2*c)^7 + 96*B*a*b^3*tan(1/2*d*x + 1/2*c)^7 + 24*A*b^4*tan(1/2*d*x + 1/
2*c)^7 - 15*B*b^4*tan(1/2*d*x + 1/2*c)^7 - 288*B*a^3*b*tan(1/2*d*x + 1/2*c)^5 - 432*A*a^2*b^2*tan(1/2*d*x + 1/
2*c)^5 + 72*B*a^2*b^2*tan(1/2*d*x + 1/2*c)^5 + 48*A*a*b^3*tan(1/2*d*x + 1/2*c)^5 - 160*B*a*b^3*tan(1/2*d*x + 1
/2*c)^5 - 40*A*b^4*tan(1/2*d*x + 1/2*c)^5 - 9*B*b^4*tan(1/2*d*x + 1/2*c)^5 + 288*B*a^3*b*tan(1/2*d*x + 1/2*c)^
3 + 432*A*a^2*b^2*tan(1/2*d*x + 1/2*c)^3 + 72*B*a^2*b^2*tan(1/2*d*x + 1/2*c)^3 + 48*A*a*b^3*tan(1/2*d*x + 1/2*
c)^3 + 160*B*a*b^3*tan(1/2*d*x + 1/2*c)^3 + 40*A*b^4*tan(1/2*d*x + 1/2*c)^3 - 9*B*b^4*tan(1/2*d*x + 1/2*c)^3 -
 96*B*a^3*b*tan(1/2*d*x + 1/2*c) - 144*A*a^2*b^2*tan(1/2*d*x + 1/2*c) - 72*B*a^2*b^2*tan(1/2*d*x + 1/2*c) - 48
*A*a*b^3*tan(1/2*d*x + 1/2*c) - 96*B*a*b^3*tan(1/2*d*x + 1/2*c) - 24*A*b^4*tan(1/2*d*x + 1/2*c) - 15*B*b^4*tan
(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d